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ABSTRACT 
 

The sliding gate plate that controls steel flow through the tundish nozzle sometimes cracks leading to air aspiration and safety 
concerns. To evaluate possible mechanisms for crack formation, this research applies a 3-D finite-element model of the thermal and 
mechanical stress in a sliding-gate plate during preheating and casting induced by thermal expansion and/or mechanical movement. 
The thermal model is first validated with previous temperature histories measured during preheating and casting in a ladle plate. The 
model of a tundish sliding gate nozzle is then used to investigate thermal-mechanical behavior and cracking due to the temperature 
variations during preheating and casting. The model predictions of the maximum stress location and orientation match well with the 
crack location observed in used plates from POSCO. Different mechanisms for the formation of two different types of common 
through-thickness cracks are identified and explained. The first involves exterior tensile stress during heating stages, and the second is 
due to excessive compression from non-optimal placement of guide points on the steel cassette. 

 
INTRODUCTION 

 
Flow between the tundish and mold in continuous-steel casting is often controlled by an assembly of three refractory plates, as shown 
in Figure 1. The middle plate is moved to adjust the opening to control the flow rate through the nozzle to maintain a stable mold 
meniscus level. Cracking of the sliding gate refractories is important because it poses a great potential safety hazard, in addition to 
steel quality problems. Even if cracks are rare, the precautionary limits put on lifetimes and productivity to avoid potential problems 
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COMPUTATIONAL MODEL 
 

To explore thermal and mechanical stress in a sliding gate plate during preheating and casting, a three-dimensional thermal-stress 
model was developed. Temperature, ( )T x , of the components of the sliding gate assembly is found by solving the heat-conduction 

equation [4].: 
 2 0k T∇ =  (1) 

 
where k  is the thermal conductivity, and x are the three coordinate directions. The mechanical behavior is found by solving the 
differential equations of force equilibrium: 

 F∇⋅ =σ  (2) 
 

where F  if the force vector from thermal, mechanical, and ferrostatic pressure loads, ( )xσ  is the Cauchy stress tensor, computed 

by Hooke’s law of elasticity: 
 : el=σ εC  (3) 

 
where C  is the fourth-order tensor containing 81 elastic coefficient.: 

 
 

( ) ( ) ( )( )2 1 1 1 2ijkl ik jl ij kl
E E

C
νδ δ δ δ

ν ν ν
= + +

+ + −
 (4) 

 
where E  is Young’s modulus, 65 GPa for refractory and 206 GPa for the steel cassette; ν  is Poisson’s ratio, 0.2 for refractory and 

0.3 for the steel cassette; and ijδ  is the Kronecker delta. The elastic strain tensor ( )el xε  is computed from an additive 

decomposition of the strains: 
 

 el th= −ε ε ε  (5) 
 
where ( )xε  is the total strain tensor, computed from the gradient of the displacement field ( )xu : 

 
 ( )( )1

2
Tε = ∇ + ∇u u  (6) 

 
and ( )th xε  is the thermal strain tensor, calculated based on the coefficient of thermal expansion α  and reference temperature 0T : 

 
 ( )0

th T Tε α= − I  (7) 

 
where ijδI =  is the second-order identity tensor, and α  is thermal expansion coefficient, 8.2 × 10-6 °C-1 for refractory.  

 
For the thermal problem, the flame and molten steel heat convection boundary conditions in the ladle and tundish sliding gate nozzle: 

 
 ( )k T h T T∞− ∇ ⋅ = −n  (8) 

 
where ( )xn  is the surface normal to outside, ( )h x  is the convection heat transfer coefficient and ( )T x∞  is the sink temperature. 

During the preheating stage, internal gas flame temperature and heat transfer coefficient are needed. Based on liquefied natural gas 
(LNG), containing 88% Methane (CH4), 5% Ethane (C2H6), 5% Propane (C3H8) and 2 % Butane (C4H6) [5], and stoichiometric air, a 
flame temperature model [6] gives a gas temperature of 1518 °C with no excess air. However, the flames do not directly touch the 
sliding gate plates and there are heat losses due to excess air entrainment, so the internal gas temperature was assumed to be 750 °C. 
 
During preheating, the heat transfer coefficient for free heat convection from the exterior of the cylinder-shaped nozzle to atmosphere 
is given by the relation for turbulent flow by Churchill et al. [7]:  
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where Nu  is Nusselt number, Ra  is Rayleigh number, Pr  is Prandtl number, h  is free heat transfer coefficient, k  is thermal 
conductivity and r  is nozzle outside radius, of 0.225 m. This gives a free heat transfer coefficient (ho,preheat) of 8.8 W/m2·K. 
During preheating, the heat transfer coefficient for forced heat convection from the turbulent flowing combustion products to the 
contact surfaces on the nozzle interior are given by an empirical equation for smooth cylinders by Petukhov et al.[8]: 
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where ReD  is the Reynolds number and f  is Darcy friction factor. This gives hi,preheat of 65 W/m2·K  

 
During the steel casting stage, the combustion gases are replaced by molten steel, flowing through the sliding gate bore at 1550°C. The 
forced convection relation for turbulent metal flow from Sleicher and Rouse equation[9] is used: 
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where u  is an average flow velocity in cross sectional area of cylinder, ν  is kinematic viscosity of molten steel and a  and b  
vary with Nusselt number. This gives hi,steel of 28.7 kW/m2·K. 
 
The heat conduction boundary conditions of the sliding plates are: 
 

 k T q− ∇ ⋅ = ⋅n n  (12) 
 
where ( )q x  is the heat flux vector. The boundary conditions of the radiation heat loss from the heated sliding gate plates: 

 
 ( )4 4

surk T T Tεσ− ∇ = −  (13) 

 
where ε  is the emissivity of materials and σ  is the Stefan-Boltzmann constant. 
 
Mechanical loading is applied by constraining the horizontal displacements of the refractory plates where they touch the guide points 
on the steel cassette. Additional mechanical loading pressure in the vertical direction is provided by tension in the bolts where they 
contact the plates, but this was ignored in the current work. 
 
Ferrostatic pressure is imposed on the inside refractory surfaces exposed to the flowing steel: 
 

 pF ghρ=  (14) 

 
where h  is height difference between the tundish free surface and the sliding gate location, 1.8 m, ρ  is molten steel density, 7020 

kg/m3, g  is gravitational acceleration 9.81 m/s2 and pF  is the resulting average ferrostatic pressure, 0.124 MPa. Relative to the 

typical stress from thermal expansion, E Tα− ⋅ ⋅Δ , which for 1000 °C temperature change is ~540 MPa, this ferrostatic pressure is 
negligible and so can be neglected. 
 
The above equations were solved using the finite-element method with the commercial software ABAQUS 6.9-1. The heat transfer 
model used standard linear three-dimensional wedge-shaped (DC3D6) 6-node brick elements for the sliding plates, hexahedral 
(DC3D8) 8-node brick elements for the steel band. The stress model used wedge-shaped (C3D6) 6-node linear brick elements for the 
sliding plates and hexahedral (C3D8R) 8-node linear brick elements for the steel band. This linear thermal and stress problem required 
about 10 hours to solve on a computer with an 8-core 2.99 GHz Intel Xeon Processor and 16 GB of RAM. 
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molten steel into the mold [10]. Temperatures were measured with four thermocouples installed on the non-working side of the upper 
plate, and plates were subjected to a preheating thermal treatment at 170 °C.  
 
The geometry and thermocouple locations are shown in 
Figure 5. Thermocouples are aligned along the plate 
symmetry plane to measure temperature variation with 
distance from the inner bore of the plate. A wedge shaped 
finite element mesh is designed as shown in Figure 6. During 
the preheating stage, the ladle plate is heated from 25°C with 
an ambient temperature of 25°C and inside gas temperature 
of 750 °C, followed by steel casting at 1590 °C, using the 
same convection coefficients as proposed for the sliding gate 
nozzle model, and given in Table I. The preheating time was 
estimated to be 50 minutes, based on when thermocouple 
number one reached 150°C. Half of the ladle-nozzle plate is 
simulated, so the symmetry plane is insulated. The contact 
surfaces between the upper surface of the upper plate and the 
upper tundish nozzle, the lower surface of the upper plate 
and the upper surface of the lower plate are also insulated, 
because it is assumed that the heat exchanged between these 
surface pairs is negligible (Figure 7). The thermal properties 
[11] and constants for this ladle plate validation problem are 
given in Table I.  
 
The upper ladle plate temperature contours predicted by the current ABAQUS model after ninety minutes are shown in Figure 8. 
Temperature in the plate decreases radially from the plate inner bore to the outside surface with a large, nonlinear temperature gradient 
due to the large heat capacity of the refractory. Experimental measured and predicted ladle plate temperature histories are compared in 
Figure 9.  
 
 
 
Temperature (°C) 

                Preheating            Molten steel pouring 

Figure 8. Ladle plate temperature contour, 90 min Figure 9. Comparison of measured and predicted temperature in ladle plate 
 
During the forty minutes of casting where thermocouples were recording, the experimental and predicted temperatures in the ladle 
plate match well with the model simulation, especially near the plate bore. This suggests that assuming an internal gas temperature of 
750 °C during preheating is reasonable, in addition to the heat transfer coefficients used for the tundish sliding gate nozzle application. 
 

APPLICATION TO TUNDISH SLIDING GATE NOZZLE PLATES 
 

The half of the symmetrical tundish sliding gate nozzle system assembly simulated in this work is shown in Figure 10. The upper and 
lower cassette and three sliding-gate plates are all clamped together by four bolts. Each of the plates is surrounded with a steel band 
and is restrained within the cassette by guide points. The middle plate moves back and forth between such guides which are connected 
to a hydraulic cylinder to control the molten steel flow. Details of the finite element mesh are shown in Figure 11 and Table II. Three 
plates and three steel bands are modeled and number of the total elements is 52,871. 
 
Starting initially at ambient temperature, all of the parts are preheated to 750 °C at 100 percent (fully open) for 3.5 hours. Then, the 
middle plate is moved to zero percent open at 25 mm/sec, taking 5 seconds and held for 12 more minutes while steel fills the tundish. 

Table I. Properties[11] and constants for ladle plate model validation 
problem 

Property or Constant Value 
Initial nozzle temp., Tinitial 25 °C 
Initial gas temp., Ti,preheat 750 °C 
Internal conv. heat transfer coeff., hi,preheat 65.24 W/m2·K 
External ambient temp., To,preheat 25 °C 
External conv. heat transfer coeff., ho,preheat 7 W/m2·K 
Molten steel temp., Ti,steel 1590 °C 
Internal conv. heat transfer coeff., hi,steel 2.87×104 W/m2·K 
External ambient temp., To,steel 150 °C 
External conv. heat transfer coeff., ho,steel 7 W/m2·K 
Density, ρ 3200 kg/m3 
Thermal conductivity, k 8.26 W/m·K 
Specific heat, Cp 1004.64 J/kg·°C 
Stefan-Boltzmann const., σ 5.37×10-8 W/m2·K4 
Emissivity[12], ε 0.92  
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